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a  b  s  t  r  a  c  t

The  operation  of  advanced  chromatographic  systems,  namely  comprehensive  two-dimensional  (2D)
chromatography  coupled  to  multidimensional  detectors,  allows  achieving  a great  deal  of  data  that  need
special  care  to  be  processed  in  order  to characterize  and  quantify  as  much  as  possible  the analytes  under
study.  The  aim  of this  review  is  to identify  the  main  trends,  research  needs  and  gaps  on  the  techniques  for
data  processing  of multidimensional  data  sets  obtained  from  comprehensive  2D  chromatography.  The
following topics  have  been  identified  as the most  promising  for new  developments  in the near  future:  data
acquisition  and  handling,  peak  detection  and  quantification,  measurement  of overlapping  of  2D  peaks,
and  data  analysis  software  for 2D  chromatography.  The  rational  supporting  most  of  the  data  processing
hemometrics
eak detection
esolution
ata treatment

techniques  is based  on  the  generalization  of one-dimensional  (1D)  chromatography  although  algorithms,
such  as  the inverted  watershed  algorithm,  use  the  2D  chromatographic  data  as  such.  However,  for  pro-
cessing  more  complex  N-way  data  there  is  a need  for  using  more  sophisticated  techniques.  Apart  from
using  other  concepts  from  1D  chromatography,  which  have  not  been  tested  for  2D  chromatography,  there
is still  room  for new  improvements  and  developments  in algorithms  and  software  for  dealing  with  2D

comprehensive  chromatographic  data.

© 2012 Elsevier B.V. All rights reserved.
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. Introduction

The development of several one-dimensional (1D) separation
echniques, such as gas chromatography (GC), liquid chromatogra-
hy (LC), and capillary electrophoresis (CE), led to the generalized

dea by the end of the twentieth century, that these techniques
ould be just finely tuned in order to solve all the practical prob-
ems in Analytical Chemistry [1]. However, the need for analysis of
ncreasingly complex samples with a large number of compounds,
ighlighted the limitations of such techniques, and prompted the
evelopment of technologies with a much higher separation capac-

ty in order they could take full advantage of coupling them
o advanced detection systems, such as mass spectrometry and
uclear magnetic resonance spectroscopy.

The need for improving the analytical figures of merit associ-
ted to the research explosion in proteomics and metabolomics,
nd the ever increasing requirements for adequate identification
nd quantification of proteins, glycoproteins and metabolite prod-
cts has prompted a need to push separation techniques to their

imits. Furthermore, even when 1D chromatography could produce
cceptable results, they do not have the separation power to deal
ith complex samples, and their use in such cases would mean

pending a lot of time for analysis [1,2]. The obvious response to
his lack of separation power of 1D techniques is the development
f multidimensional chromatographic systems using two  or more
ndependent separation mechanisms.

Multidimensional separation can be understood as a separation
ystem capable of discriminating the components from a mixture,
sing different separation mechanisms which are connected but do
ot interact among themselves, that is, they should be completely

ndependent from each other. There are two modes of operation of
ultidimensional chromatography: heart-cutting and comprehen-

ive. In the heart-cutting mode, only some selected fractions are
ransferred from the first into the second separation system, and
he results become two separate 1D data sets. On the other hand, a
eparation is comprehensive when the whole sample is subjected
o two different separation mechanisms, the separation (resolu-
ion) obtained in the first dimension is essentially maintained, and
he chromatogram obtained is representative of the entire sample
after pre-treatment), which requires that either no sample goes
o waste (everything passes through the detector) or a sufficient
umber of second-dimension chromatograms are recorded very

requently across the width of a first-dimension peak [3].
As reviewed by Phillips and Beens [4],  the comprehensive mul-

idimensional chromatography became more relevant after the
evelopment of comprehensive 2D gas chromatography (GC × GC),
ore than a decade after the development of a first comprehensive

D liquid chromatography (LC × LC) by Erni and Frei [5].  Although
he data sets resulting from GC × GC have received more attention
han those resulting from any other comprehensive 2D chromato-
raphic technique, they are formally equivalent and most of the
ork developed for GC × GC can be applied with small modifi-

ations to other chromatographic combinations, such as LC × LC,
C × GC, and LC × CE.

The data collected from advanced chromatographic systems

esigned for the analysis of complex samples contain huge amounts
f information that need complex processing algorithms in order to
ake advantage of such powerful analytical systems. For instance,
nalysis of a sample with n replicates in a 2D chromatographic
 . . . .  . . .  . . . . .  .  .  . .  .  . . . . .  . .  . . . . . . .  .  . . . .  . . .  .  . . .  . . .  .  .  . . . . .  .  .  .  .  .  . . . . . . . . . .  .  . .  .  . 44

system coupled to a multichannel detector, such as a diode array
detector (DAD) or a mass spectrometer (MS) can produce a so-
called four-way data set. This terminology can be better understood
through a schematic representation of different data sets derived
from different types of analyses and orders of instruments, as
shown in Fig. 1. The interpretation of these data sets is based on
the order of the analytical signal, which was thoroughly discussed
in 1994 by Booksh and Kowalski [6].  Fig. 1A represents both a first-
order tensor (i.e., a vector) data that changes over the time of the
first-dimension and a two-order tensor (i.e., a matrix) of data. While
the former can be obtained by a first-order instrument, such as 1D
chromatography system coupled to a single channel detector, the
two-order tensor of data is derived from a second-order instru-
ment, which is defined as an instrument capable of generating a
data set that also changes over time. A 2D chromatographic system
coupled to a single channel detector or 1D hyphenated chromato-
graphic techniques (e.g. GC/MS or MS/MS) are good examples of
such second-order instruments. It should be mentioned that the
first-order tensor of data can also be produced by discarding infor-
mation from a second-order tensor acquired in a second-order
instrument. This is usually performed to build the first-order pro-
file of the data set. The order of the data produced can be further
increased if one combines an additional first-order instrument to
the second-order instrument. This is depicted in Fig. 1B, which rep-
resents a third-order tensor data acquired in a 2D chromatography
system coupled to a multichannel detector (third-order instru-
ment). Finally, a four-way data, represented in Fig. 1C, is classified as
a hypercube of data obtained by stacking the data from n replicates
acquired in a third-order instrument.

The aim of this review is to discuss the state of the art in data pro-
cessing for multidimensional data sets obtained in different types
of 2D chromatography, from the pre-treatment until the quantifi-
cation of the identified chromatographic peaks. The discussion will
lead to the identification of the main trends in data processing of
comprehensive 2D chromatography and it will pinpoint the gaps
and research needs that should be tackled in this field.

2. Data acquisition and handling in comprehensive 2D
chromatography

The massive amount of data generated from the current
high-resolution analytical instrumentation requires the use of com-
puterized assistance for data processing and transformation. The
2D chromatography is no exception, and the use of informatics
tools has become essential for transforming the raw analytical data
into fit for purpose information. The 2D chromatography produces
a considerable amount of data in a relatively short time when
applied to the separation of complex mixtures. Such an enhance-
ment in performance provides an order-of-magnitude increase in
peak capacity, when compared to 1D chromatography.

Handling of 2D chromatography data is a challenging task in
Analytical Chemistry. The acquisition of data in real time from 2D
chromatography coupled to detectors, such as DAD  or MS, gen-
erates huge data files, that can reach more than 10 million data
points which may  lead to considerable problems in storage and pro-

cessing [2,7]. The greatest challenges lies in producing automatic
tools capable of processing and converting the data matrix under
useful forms without losing control on the analysis of samples for
obtaining raw data, and transformation of data into useful chemical
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ig. 1. Representation of (A) 1D chromatography (one-way data) and 2D chromat
three-way data); and, (C) 2D chromatography coupled with a multichannel detect

nformation. The scarcity of software available for data acquisition
nd handling in 2D chromatography, especially in LC × LC, is one
f the most significant impediments for a generalized adoption of
hese separation techniques.

There are three general approaches that can be used to deal with
he 2D chromatographic data. The first approach, and since the 2D
hromatograms can be considered as a set of consecutive 1D chro-
atograms, is to deal with those chromatograms individually using

ll the data treatment tools already extensively developed for 1D
hromatography; the second approach consists of dealing with the
eal nature of the data, applying the methods for second- (or third-

 order tensor data, after previously having “folded” the vector of
D data into a matrix (each column corresponding to a modula-
ion period); a and finally, the third approach is to transform the
ata in an image file (also after a data modulation step) and fol-

ow further image treatment and processing. The first approach can
ake advantage of a full body of knowledge already designed and
xtensively studied for 1D chromatography and the availability of

 large amount of software ready for use. On the other hand, when
ealing with two or higher order data matrix, as it is the case of
he second approach, it requires knowledge and expertise on com-
lex chemometric algorithms. This is a developing field, and the
volving work is very promising, especially for dealing with three
r higher order dimensional data. Finally, and despite the use of
maging tools to deal with 2D chromatograms may  look like a mis-
t, this third approach has been in fact translated into commercially
vailable software showing excellent results [8–11].

.1. Data pre-treatment

In a typical experiment of 2D chromatography, the massive
mounts of data acquired in both dimensions create large data
les, which need to be processed in order to become useful. These
ata sets are extremely important in chemical analysis, and require

he use of computational systems to process and extract the max-
mum chemical information possible. However, this processing
equires different approaches and methodologies depending on the
ifferent ends or goals set by the analyst. Therefore, in order to
y (two-way data); (B) 2D chromatography coupled with a multichannel detector
h sample replicates (four-way data).

accomplish this task, it becomes necessary a transformation of the
data into a more suitable form, in accordance with the aim of the
analytical work [2].

In general terms, the most common operations and important
methodologies in data processing and pre-treatment in order to
become possible the representation, detection and quantification
of peaks are, the removal and correction of background, the atten-
uation of the signal noise, the correction of uncontrolled shifts in
retention time, the identification and removal of signal artefacts,
and the resolution of overlapping peaks [1,2,8].  The whole set of
methodologies are not necessarily applied within each data pro-
cessing and/or pre-treatment procedure: again, the reader should
be aware that some operations are necessary, others are not,
depending on the final goal of the analysis.

2.1.1. Modulation and interpolation of data
The first step in data processing of comprehensive 2D chro-

matography is to extract the experimental data from the detector
response and build the corresponding 2D chromatogram. In the
first applications of 2D separations, namely the development of
LC × LC by Erni and Frei [5],  two detectors were used for measuring
the analytical signals at the end of each of two chromatographic
columns. Nowadays, due to both the comprehensive methodology
of the analysis and the available software, the experimental signal
is only measured at the end of the second column. Consequently, in
order to transform the output of the detector positioned at the end
of the second column into a 2D chromatogram, it is necessary to
slice the output according to the modulation time, and re-organize
each sliced chromatogram along the time axis of the volume sepa-
rated in the first column in this same modulation time. In order to
perform this properly, the number of points acquired by the detec-
tor should be such that the number of points per modulation time
is an integer number, otherwise interpolation is necessary.

Fig. 2A shows a simulated output from a detector positioned at

the end of a 2D separation system, with a modulation time of 2 min.
Since the modulation time is known, then the application of the slic-
ing methodology is straightforward, and the resulting Fig. 2B shows
the same data set but now under a form of a 2D chromatogram. After
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Fig. 2. Representation of a simulated data set for comprehensive 2D liquid chromatography: (A) raw data from the detector positioned at the end of the second column; (B)
l  plot o
s
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b
a
a
w
w
d
f
f
l
fi

t

ayout  of the sliced 1D chromatograms defined by the modulation time; (C) contour
moothing.

ata modulation, it may  be necessary to smooth the chromatogram
y interpolation of data points between 1D chromatograms mainly
long the first dimension in order to obtain a 2D chromatogram,
s shown in Fig. 2C and D. Five different interpolation methods
ere recently compared by Allen and Rutan [12], for the case
hen producing a sufficient number of data points in the first
imension to allow the alignment of retention times from dif-
erent injections. These methods, including linear interpolation
ollowed by cross correlation, piecewise cubic Hermite interpo-

ating polynomial, cubic spline, Fourier zero-filling, and Gaussian
tting, performed equally well.

Nowadays, the availability of multichannel detectors coupled
o chromatographic systems allows obtaining a range of spectral
f a 2D chromatogram after smoothing; and, (D) 3D plot of a 2D chromatogram after

data instead of a single intensity reading, and therefore the opera-
tor can have an additional order of measurement in the data array
related to the spectral information. Prior to the slicing of the chro-
matograms according to the modulation time, the operator faces
already a second-order data array that should be taken into account.
Therefore, to convert the experimental data into usable chemical
information it is necessary, for each wavelength signal, to divide
the data according to the modulation time for building a 3D data
matrix.
2.1.2. Data representation and visual features
For representation of a 2D data matrix either the contour colour

coded plot or the 3D plot are the types of graphs that easily allow
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ig. 3. Representation of a simulated 2D chromatogram and its component parts 

t  al. [14]).

isualizing and understanding the distribution of peaks in a chro-
atogram. As shown in Fig. 2C, such a graph does not provide

uantitative information but it is an excellent visualization tool
hich becomes the first essential step for further processing of the
ata obtained. The use of a colour coded scale for peak intensity
llows an immediate qualitative assessment of the different peaks
nd respective heights. Fig. 2D uses the same data as in Fig. 2C for
imulating a typical 2D chromatogram, and the 3D plot provides
lready quantitative information, thus becoming the best approach
o observe, analyse, and comment the visual features of 3D peaks
hape and form [2,13].  When dealing with higher order data dimen-
ions, it is not possible to produce conventional contours and 3D
lots, since a 2D chromatographic system coupled to a multichan-
el detector will produce a three dimensional (3D) data array.

.1.3. Background and noise signal
As in any other analytical methodology [14], it is possible to sep-

rate the 2D chromatographic experimental data signal (Fig. 3A) in
o three major parts: the analytical signal, the background signal,
nd the noise. The analytical signal, as depicted in Fig. 3B, gives the
hromatographic response of the analyte obtained for a particu-
ar set of experimental conditions and a particular detector free off
ny traces of noise and background effects. The background, repre-
ented in Fig. 3C, is associated with the systematic response from
he chromatographic system not related to the analyte. Finally, the
oise, represented in Fig. 3D, is associated with random variations
nd it is usually related to the sensitivity of the detector.

The background, particularly associated to noisy signal, may
ause many problems, especially for quantification, since it can

hange both the shape and the elution time of peaks. This back-
round drift can be caused by changes in the composition of mobile
hase when in gradient mode, variation of pressure and temper-
ture, and fluctuations caused by the injection valve. When the
alytical signal (B), background (C) and noise (D) (visualization inspired by Amigo

signal-to-noise ratio is low, it becomes difficult in practice to sepa-
rate between noise and background, but in order to achieve a clear
analytical signal with a flat baseline, it is necessary to identify and
eliminate the interferences caused by noise and background sig-
nal. Although the noise interference can be usually reduced using
smoothing algorithms, the strong background drifts are difficult
to resolve. One of the easiest ways to deal with the background
interference is performing a “mean centering” of the data, but only
in the presence of a relatively stable background. Another possi-
ble way  is to subtract a “blank” chromatographic run obtained in
the same instrumental conditions, but even so this strategy may
not be very accurate due to possible changes in eluent spectrum
and differences in noise between chromatograms. For overcoming
the drawbacks of using simple strategies in 2D chromatography,
more complex algorithms have been proposed for removing the
background signal and noise.

Zeng et al. [15] applied to each 1D peak of a 2D chromatogram
(obtained in a GC × GC coupled with a flame ionization detector
(FID) system) a baseline correction using a linear interpolation
technique. The peak background was  linearly simulated, subtracted
from the 1D vector, and then a moving windows average was
applied for smoothing the noise in the data. On the other hand,
Zhang et al. [16] suggested the use of the trilinear decomposition
method to remove the 3D background drift in 2D chromatography
coupled with multichannel detectors (in this case a LC × LC cou-
pled with a diode array detection (DAD) system). The authors [16]
used the background drift and the analytical signal as factors for
building a factor model by applying an alternating trilinear decom-
position (ATLD) algorithm to the raw dataset in order to extract

the background factor, and then subtract it from the raw dataset.
The ATLD algorithm showed adequate proprieties of convergence
and robustness to the excess of factors used, although others
chemometric methods such as parallel factor analysis (PARAFAC),
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elf-weighted alternating trilinear decomposition (SWATLD) and
lternating penalty trilinear decomposition (APTLD) algorithms can
e used with similar results [16]. Finally, this methodology removes
he background drift without the loss of peak information in entire
pectral region and without the need for replicates and “blank”
hromatograms.

An alternative technique is the use of image treatment software
o estimate and remove the background from images files of 2D
hromatograms, as suggested and applied by Reichenbach et al. [10]
or GC × GC. This algorithm takes advantage of the following struc-
ural and statistical properties of the background from the images
f 2D chromatograms: dead-bands that are regions without ana-
ytical signal; the mean of background level does not change much

hen compared to the characteristic peak widths; and, the noise
resent has the same statistical properties of the random white
oise. This background-removal algorithm has been included in
he GC Image and LC Image software packages, which has been
eported in several works [8–11].

.1.4. Correction of shifts in retention time of peaks
An important steps in any chromatography, either 1D or mul-

idimensional, is to ensure the precision in the determination of
etention time for each and every peak. These deviations are often
bserved in the chromatographic analysis, and can be easily iden-
ified by the comparison to the patterns of variation between
eplicates or standards. Due to the high sensitivity of the analyt-
cal methods, a poor precision of the retention times, when not
orrected, can generate enormous deviations in the most of the
hromatographic detection and quantification techniques actually
sed.

The fluctuations in retention time of peaks are always present
n 2D chromatographic systems and can be originated from vari-
tions in temperature and pressure, degradation of the stationary
hase, and matrix effects. For data processing to be successful there

s a need to ensure that the retention times between replicates
re repeatable and reproducible, and the axes are synchronized to
revent slice-to-slice misalignments and to ensure that peaks are
roperly aligned. Although there are data treatment methodolo-
ies and techniques that do not need to correct these deviations,
his correction is a critical factor in data treatments and algorithms
hat relies upon the bilinearity or trilinearity of the data (such as,
RAM and PARAFAC).

The alignment between replicas/samples or warping can be
ccomplished by using different algorithms. Fraga et al. [17] sug-
ested an alignment technique of the retention times, based on
inimizing residuals in the generalized rank annihilation method

GRAM) which was addressed by Prazen et al. [18] for second-
rder hyphenated chromatography, namely GC–MS. On the other
and, van Mispelaar et al. [19] suggested a correlation-optimized
hifting, based in an inner-product correlation associated with
elected regions of the GC × GC data. This algorithm uses a 2D chro-
atogram reference to align all selections and as this alignment

s performed, the inner-product correlation is calculated in order
o identify the best-fit position. Johnson et al. [20] described an
lgorithm based on windowed rank minimization alignment with
nterpolative stretching between the windows. In this work [20]
his algorithm was used to deal with shifted GC × GC retention
imes in quantification of naphthalene in jet fuel and produced
etter results than in the case where quantification of the chro-
atograms was not pre-aligned. Pierce et al. [21] reported the

pplication of a comprehensive 2D retention time alignment algo-
ithm that allows a warping in both chromatographic dimensions

sing a novel indexing scheme, and preserves the separation infor-
ation in both dimensions. The algorithm was applied by Pierce

t al. [21] to GC × GC but it can be applied to any 2D separa-
ion system with a gain on the retention time precision and also
gr. B 910 (2012) 31– 45

restoring the linearity of the data without losing quantitative infor-
mation. Zhang et al. [22] developed a 2D Correlation Optimized
Warping Algorithm, (2D COW) to align data obtained from 2D gas
chromatography coupled with time-of-flight mass spectrometry
(GC × GC–TOFMS). This powerful and flexible algorithm stretches
and compresses a local sample segment of the 2D chromatogram
to maximize the correlation from the sample relatively to the
2D chromatogram reference. Such calculations allow interpolating
the warp non-grid points from the shifted grid points in order to
align the chromatograms. When using image based software, the
method for automatically aligning chromatograms developed by
Hollingsworth et al. [23] can be applied, as in the case of Nelson et al.
[24] and Wardlaw et al. [25] to study the weathering of an oil spill
and oil seepage, and Cordero et al. [26] to compare coffee samples.
Unfortunately, all of these methodologies and algorithms cannot
deal with three- or higher-orders data structures, as those obtained
from 2D chromatography coupled with multi-channel detectors. As
the degree of hyphenation of several detectors to 2D chromatog-
raphy increases, the more urgent becomes the search for more
sophisticated techniques for correction of shifts in retention times
of peaks. Recently, Allen and Rutan [12] developed an algorithm
especially suited to LC × LC-DAD that allows dealing with four-way
data with satisfactory results.

On the other hand, as already written slice-to-slice misalign-
ments can occur. This time shifts occur between the subsequent
second dimension chromatograms within a single 2D run pre-
venting the linearity between the measuring orders. Ideally, the
same peak in consecutive fractions should elute always at the
same retention time, but sometimes such synchronization may  not
happen due to several operational variables, namely in GC × GC,
such as control and timing of cooling and heating programmes,
non-linearity of distribution of isotherms, and non-instantaneous
reinjections into the second column [27]. These deviations between
the transferred fractions can cause deformations in the shape
of the 2D peaks or even give incorrect information about the
number of peaks in case of more accentuated deviations. Skov
et al. [28] developed a pre-treatment algorithm that uses cross-
correlation methodologies to align shifted fractions. These authors
handled retention time shifts in trilinear data structures from
a GC × GC–TOFMS by comparing a standard retention time shift
correction followed by PARAFAC with a PARAFAC2 algorithm, a
“relaxed but powerful version of PARAFAC” as stated by the authors.
Although the PARAFAC2 showed great potential, the shift correc-
tion followed by PARAFAC was  found to be more robust at lower
signal-to-noise ratio. Recently, Parastar et al. [29] proposed a new
bilinear peak alignment (BPA) method, based on multivariate curve
resolution, to correct this same within run retention time shifts in
GC × GC coupled to a single channel detector (bilinear structure).

Another issue that it is necessary to take into account in 2D
chromatography is the different time scale between the second
dimension and the modulation period. Since the 2D chromatogram
is generated from a 1D signal array, it is fundamental to make
sure that there are not 2D peaks “wrapped-around” [30], i.e., the
maximum range of a peak retention time in the second dimension
is lower than the modulation period. One way  to deal with this
problem, which is quite common in chromatography of complex
mixtures, is an algorithm capable of finding the absolute retention
times in these cases as suggested by Micyus et al. [30]. In this algo-
rithm, after the detection of “wrapped-around” 2D peaks, a series
of chromatograms are reanalysed by an integer fraction of original
modulation period and shifts of the retention of the second dimen-
sion are used to determine the absolute retention times. Another

way, recently developed and presented by Weusten et al. [31], is to
deal with the 2D chromatogram as a surface of a 3D cylinder. This
cylindrical transformation, was tested in a set of 11 replicates of a
human urine sample analysed by a GC × GC–MS, with good results.
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. Peak detection in comprehensive 2D chromatography

After the data pre-treatment, probably the most critical step
n the analysis of the 2D chromatograms is the detection of the
D peak. In the past decade, many authors dedicated to develop
lgorithms capable of detecting 2D peaks, especially for applica-
ions in GC × GC. A large part of these methodologies are direct
onsequence of the already developed algorithms for 1D chro-
atography, since in first instance the 2D dimensional separations

an be understood as upgrading the classical column chromatog-
aphy by just adding another column as a second dimension.
owever, with the evolution on the concept of 2D chromatography
ssociated to the increasing use of multichannel detectors and the
onsequent production of huge amount of data, it is foreseeable an
ncrease of methodologies and algorithms that can deal with these
ata more efficiently in a global manner rather than adding up 1D
hromatograms.

Conceptually, the peak detection algorithms can have two main
urposes: in non-targeted analysis, the algorithms should be capa-
le of identifying 2D peaks in complex mixtures, without any
re-information from de sample (e.g., two-step peak detection
lgorithm [27], and the watershed algorithm [8]); in targeted
nalysis, the algorithms need a complete or a regional 2D chromato-
raphic reference, and the peak detection is made by comparison
ith this standard (e.g., the GRAM method [32]). Several authors,
ho have developed algorithms for 2D peak detection, have also
eveloped methods of quantification, since most of the analytical
ork involves not only the screening of peaks but also their quan-

ification. Finally, it is important a word of caution regarding the
hoice of an algorithm because it may  have to take into account
everal factors such as speed of analysis, accuracy of results, and
omponents of interest, depending on the specific work involved.

.1. Two-step peak detection algorithm

One of the most important contributions to the actual state of
he art in 2D chromatography has been produced by Peters et al.
27,33], namely when suggesting new methodologies and impor-
ant concepts for detection and resolution of peaks in GC × GC.
ome of these methodologies, in special case for peak detec-
ion, have already been applied in LC × LC data sets [34] and the
emaining can also be applied in principle to LC × LC with minor
odifications, if any at all.
For the specific case of peak detection, Peters et al. [27] devel-

ped a detection algorithm that deals with this problem in two
ain steps: firstly, already known methods developed for peak

etection in 1D chromatography are applied to detect the peaks one
imension at the time; secondly, some criteria are used to decide

hich peaks of the first dimension correspond to the same com-
ound in the second dimension, that is, some criteria are set up for
he process of merging the peaks from the first dimension with the
eaks of the second dimension that are all produced by the same

Fig. 4. Properties of a chromatographic peak assumed to be Gaussian (A
gr. B 910 (2012) 31– 45 37

compound. It should be mentioned that this algorithm assumes
non-bilinearity of the data, and consequently it is necessary to
detect all 1D and merge them in 2D peaks. If the chromatographic
data is bilinear, it is possible to use the second partial derivatives
of the 2D matrix to identify the peaks, as suggested by Duarte et al.
[35].

The raw data acquired in comprehensive 2D chromatography
is constituted by a set of 1D chromatograms, each corresponding
to a single injection in the second column. Once the obtained data
has been organized in a 2D matrix, it becomes possible to anal-
yse all chromatograms using 1D peak detection techniques. The
two-step algorithm [27] detects 1D peaks based on the properties
of the derivatives of the peaks computed by the Savitzky–Golay
method [36]. From the original chromatogram and from the first-
and second-order derivatives, it is possible to characterize the prop-
erties of chromatographic peaks, namely the height, and the peak
starting-point and end-point (peak region). As shown in Fig. 4A,
the starting-point and the end-point of a 1D peak correspond to
the first and last point above zero, respectively, in the first-order
derivative (Fig. 4B). Although, in practice the first derivative often
does not reach zero, such problem can be overcome by defining a
minimal value to quantify [27]. On the other hand, when the value
of zero for the first-order derivative coincides with the minimum of
the second-order derivative (Fig. 4C), then it means that the original
chromatographic peak has reached the maximum value.

After defining the peaks in the previous step, it is possible to
apply an algorithm following some pre-defined criteria, in order
to merge the 1D peaks in the two  dimensions. This algorithm pro-
duces a cluster with a collection of 1D peaks in the consecutive
chromatograms that belong to the peak of the same compound [27].
The process of peak merging starts off with the first peak appear-
ing in the first chromatogram obtained in the second-dimension
and the attempt of finding all the merging combinations with all
the peaks found in the subsequent chromatograms of the second-
dimension, since these can be misaligned due to retention time
shifts between the transferred fractions. Then, the overlap crite-
rion and the unimodality criterion are applied to test whether it is
possible to merge these peaks. Finally, the procedure repeats itself
until all the merging combinations are tested [27].

For checking whether there is any overlap of the peak region
(where the peak starts and ends) in the a chromatogram, the over-
lap criterion examines the degree of overlap of two peak regions,
one from the existent 2D cluster (peak A in Fig. 5) and the other from
the candidate to be merged (peak B in Fig. 5). The ratio of overlap,
in percentage, is calculated according to the following equation, as
suggested by Peters et al. [27]:

b

OV =

a
× 100% (1)

where b is the length of the region where the two peaks overlap
and a is the length of the peak region of peak A (Fig. 5).

), its first-order derivative (B), and its second-order derivative (C).
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to noise and artefacts, which can cause a multi-peak detection in a
ig. 5. Schematic representation of peak regions of adjacent 1D peaks for different
cenarios in a chromatographic map  (visualization inspired by Peters et al. [27]).

After that, it is necessary to define a threshold for the accept-
bility of the candidate peak. If the ratio of overlap is greater than
his threshold than the peak can be subjected to the next criterion;
therwise, the peak cannot be merged and the algorithm continues
o the next candidate [27].

The basis for the application of unimodality criterion, as sug-
ested by Peters et al. [27], is the analysis of the peak-maxima
rofile in the first chromatographic dimension, between the peaks
hecked for merging in to 2D clusters. As an example, Fig. 6A shows
he peak maxima profile for the 2D chromatogram shown in Fig. 6B.
he observation of Fig. 6A, allows concluding that there are two
axima, peak A and peak D, since each 2D cluster can show only

ne maximum.
Finally, it is necessary to take into special consideration the han-

ling of the closest maxima, that is, when more than one peak has
een identified at the same retention time in first dimension. In
uch case, it becomes necessary to compare the retention time of
he candidates of the second dimension, and the candidate peak
ith the retention time closest to the last peak of the 2D cluster is

hen the peak to be merged.
After the application of the two-step algorithm, Peters et al. [27]

lso describe an integration tool for the quantification of target 2D
eaks: the 1D peaks that were used to build the target 2D peak, are
ntegrated using a trapezoidal method and then summed in order
o achieve the quantification of target analytes. The methodology
ased on summation of second dimension chromatograms has been

Fig. 6. Representation of a peak-maxima profile (A) and its corresponding 2D ch
gr. B 910 (2012) 31– 45

also used by Pól et al. [37] and Kivilompolo and Hyötyläinen [38]
for the quantification analysis of LC × LC data. A slightly different
approach based on peak volume calculation for 2D contour plots
has been suggested by Kivilompolo et al. [39].

In order to overcome the problem related to overlapped peaks,
Peters et al. [27] also suggested two  alternatives: (a) to integrate
the area under the curve from the peak start to a perpendicular line
that splits the overlapped peaks in the valley point; and (b) to sub-
tract the area under the line connecting the peak start to the valley
point from the total area under the curve, as above mentioned.
This method is easy to implement, and do not require any user
input, which makes it ideal for quantification of complex mixtures
separated by 2D chromatography. However, for chemometric
resolution and quantification of four-way data, Bailey and Rutan
[40] showed the need for more sophisticated algorithms (Section
3.3.3). In this regard, Vivó-Truyols [41] have recently proposed an
improvement of the two-steps algorithm which can set a path for
the development of a methodology capable of handling four-way
data. This algorithm, already applied and tested for LC × LC and
GC × GC data, uses a Bayesian approach to perform the merging
step, and it can be an extremely powerful tool since it follows the
chromatographer’s intuition by informing about the probability of
other peak configurations, as the correct arrangement may  not be
the most probable one.

3.2. Inverted watershed algorithm

A completely different approach for peak detection in 2D chro-
matography is the use of software able to deal with the 2D data
set using image analysis tools to extract the required information.
To perform this task, Reichenbach et al. [8] suggests the use of an
inverted version of the watershed algorithm, also known as the
drain algorithm. This algorithm, which can also be used as a topo-
graphical tool, assumes that the surface of analysis has its highest
point at a “mountain”. When it “rains” in the “mountain”, the water
tends to go down throughout the cliff, and producing puddles of
water surrounding the various “mountains”. This algorithm is capa-
ble of foreseeing the movements of this rain and consequently
delineates the peaks from an image [8]. Conceptually, the algorithm
finds the highest peak and after that it will identify the neighbour-
ing pixels until reaching the background [42]. After the detection
is complete, each 2D peak identified is, in fact, a group of pixels.
Unfortunately, the inverted watershed algorithm is very sensitive
single peak situation. However the application of smoothing tools
to the image of the 2D chromatogram may  reduce the effects of
these artefacts.

romatogram after merging (B) (visualization inspired by Peters et al. [27]).
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Once the peak detection is accomplished, then the statistical
roprieties of the peak, such as the number of pixels (area of the
eak) and the sum of pixels (volume of the peak), can be used to
easure the characteristics of the 2D peaks, such as symmetry,

rientation or eccentricity and also to obtain quantitative informa-
ion. Finally, Reichenbach et al. [8,9] suggest the use of an algorithm
or chemical identification by template matching. This algorithm
ses the statistical proprieties of the peak to compare the sam-
le peaks with statistical proprieties of several peak templates in
rder to find a match. While this algorithm can be used for peak
etection and integration in 2D chromatography, a study carried
ut by Vivó-Truyols and Janssen [43] has shown that the probabil-
ty of failure of this algorithm under normal conditions in GC × GC
s around 15–20% when compared with the two-steps algorithm
uggested by Peters et al. [27]. Such a high percentage value could
e a discouraging factor for a wider use of such method in Ana-

ytical Chemistry. However, Latha et al. [42] tested 1000 cases for
ach set of parameter values, in order to compare the detection
erformance in both algorithms after a skew correction for vari-
us parameters, such as, different levels of noise, peak widths, and
etention-time. The experiments allowed concluding that after a
kew correction, the inverted watershed algorithm showed better
esults than the two-step algorithm. Furthermore, the accuracy of
oth algorithms decreases as the peak width and the noise increase,
ven after shift correction. Therefore, there is a need for improving
he noise suppression techniques in order to achieve better results
n both detection algorithms.

.3. Multi-way chemometric methodologies

The increasing hyphenation of multi-array detectors such as
AD and MS  detector to chromatographic systems has brought

he need for developing and/or adapting more sophisticated tech-
iques, even for 1D chromatographic systems, in order to identify
nd resolve the overlapped peaks in the resulting two or higher
rder data structures [14]. One of the legacies of the 1D chro-
atography to deal with those types of data structures is the

doption of chemometric methods for the discrimination of sam-
les, depending on the patterns of both the chromatographic
etention times and the spectral characteristics [7].  There is a gen-
ral trend to use more and more complex chemometric algorithms
o extract information from the experimental data sets that can
ttain very high order of instruments and contain huge amount
f data points, namely when using multichannel detectors and
ample replicates. Many of these methods and their variants have
lready been successfully applied to 2D chromatography (both
C × LC and GC × GC); as such are the cases of the generalized rank
nnihilation method (GRAM), parallel factor analysis-alternating
east squares (PARAFAC-ALS), and multivariate curve resolution-
lternating least squares (MCR-ALS).

This family of chemometric deconvolution techniques are
lready widely used to deal with overlapped signals from data
cquired by 2D chromatography coupled to various detectors in
uantitative analysis of complex samples. Their application may
ot be straightforward, because they are based on advanced math-
matical concepts and, therefore, some caution should be exerted
efore direct application of such tools from the chemometric field.
o ensure a good application of these models, it is necessary to
uarantee that the detector gives always a linear response to the
ariation of concentration and there are no shifts in the retention
ime of the 2D peaks.
.3.1. Parallel factor analysis model
The PARAllel FACtor analysis (PARAFAC) model has its origins in

sychometrics sciences, but it has long been exploited in chemo-
etrics and related areas to deal with the increased complexity of
gr. B 910 (2012) 31– 45 39

the multi-way data sets. This is an iterative and powerful method
that has already been proven useful in deconvolution and quan-
tification in 2D-chromatography [7,17,19,42,44–55].  The PARAFAC
model applied to a three-way data array can be described as fol-
lows:

R =
N∑

n=1

xn ⊗ yn ⊗ zn + E (2)

where R, in 2D chromatography, is the instrumental response
matrix, xn is the second dimension chromatographic profile of each
factor (N), yn is the first dimension chromatographic profile of each
factor (N), zn is the detector response for each factor (N), and E is
the error matrix with same size of R matrix [45].

Several algorithms have been described for finding the param-
eters xn, yn, and zn and consequently fitting the PARAFAC model.
These algorithms can be classified in three groups [56]: (a) non-
iterative eigenvalue-based methods, such as Generalised Rank
Annihilation method (GRAM) and the Direct Trilinear Decom-
position method (DTLD); (b) alternating algorithms, such as the
alternating least squares (PARAFAC-ALS) and the Self Weighted
Alternating Trilinear Decomposition (SWATLD); (c) derivative-
based methods such as Positive Matrix Factorisation for 3-way
arrays (PMF3) and damped Gauss–Newton (dGN). GRAM and
PARAFAC-ALS have been the most extensively discussed and
applied to 2D chromatography.

3.3.1.1. The generalized rank annihilation method (GRAM). The
GRAM has been developed by Sanchez and Kowalski [32] from oth-
ers rank annihilation methods in order to deal with the analytical
problem of detecting and quantifying one or a few components
of interest from a complex mixture without the need for resolv-
ing the rest of the sample components. In practical terms, GRAM
is a non-iterative eigenvalue-based method which needs two chro-
matograms: the sample 2D chromatogram and a 2D chromatogram
obtained from one or more components of interest at well-defined
concentrations. After that GRAM compares both 2D matrices in
order to provide the pure elution profiles as well the relative con-
centration of the analyte in the sample [50,53].

The comparisons of chromatograms performed by GRAM
require that both 2D matrices must be stacked to generate a three-
way data [44]. Consequently, it is necessary that both matrices have
the same size for each row from the sample matrix corresponding
to the second dimension in the calibration matrix, and also for each
column from the sample matrix corresponding to the first dimen-
sion in the calibration matrix [49]. For this reason, this method
only supports the analysis of bilinear samples signals (signal repre-
sented by the product of two vectors) [44] and consequently does
not allow the analysis of data structures of higher dimensions.

The GRAM was the first deconvolution method used in 2D sep-
arations and in spite of being widely used, both in GC × GC and
LC × LC [17,44,49–55], it is necessary to ensure that the peaks asso-
ciated with the components of interest have the same retention
time and the same peak profile in both the sample and standard
2D chromatograms. Otherwise, the comparison of results through
GRAM will be meaningless. Although the non-interactivity of the
method justifies the speed of the calculation performed for reach-
ing the results calculation, they tend to be worse than the results
given by more interactive methods such as the PARAFAC-ALS.

3.3.1.2. The parallel factor analysis-alternating least squares
(PARAFAC-ALS). The alternating least squares (ALS) was  the

first algorithm used to fit the PARAFAC model, since it is able to
handle unresolved chemical components in three-way or higher-
order data arrays [57]. PARAFAC-ALS, which has been already used
in GC × GC and LC × LC [7,19,44–48], is not a completely automatic
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ethod such as GRAM. Before fitting the model, it requires inputs
rom the user in terms of initial factor estimative and the definition
f some constraints. However, selecting the appropriate number
f factors in the PARAFAC model can be a real hard task to achieve.
sually, this number is given by the sum of interferences and the
nalytes present in the 2D chromatogram, but it is very difficult to
orecast a priori this number for complex mixtures, particularly in
he presence of either a low signal-to-noise ratio or overlapping
eaks [45]. In order to deal with this limitation, Hoggard and
ynovec [45] suggested an algorithm capable of automatically
electing the number of factors to be used in a PARAFAC model
pplied to comprehensive 2D separations using multichannel
pectral detection, in this case a GC × GC–TOFMS.

Furthermore, there are non-negative constraints since all chro-
atographic signal are positive in relation to the mobile phase,

nd also the unimodality because chromatographic peak shapes
re expected to be unimodal, that is, they usually are Gaussian-like
ith some fronting and/or tailing.

The ALS algorithm attempts, in each iteration, to improve the
tting of the PARAFAC model until reaching the global minimum
hich is the least-squares solution. This iteration process is one of

he best qualities of the algorithm, but leads to one of its greatest
rawbacks: the time spent on number crunching, especially with
igh number of variables [57]. One of the greatest advantages of
ARAFAC-ALS method over the GRAM method is its capacity to
esolve and quantify the chemical components of interest, taking
nto account only the sample information without the need for a
tandard chromatogram or multiple replicates [7].  The application
f the PARAFAC-ALS method for resolution and quantification of
argeted analytes from a four-way data array obtained by LC × LC-
AD has already been reported by Porter et al. [7].  Finally, the
uantification can be accomplished by summing the outer product
f the different dimensions of the chosen factor in the correspond-
ng PARAFAC model across all points, thus yielding a scalar. This has
lready been shown by Hoggard and Synovec [45] in a PARAFAC of
arget analytes in GC × GC–TOFMS data.

.3.2. Target finder algorithms
Since in most cases the algorithms based on the PARAFAC model

onsume a significant amount of computing resources, there have
een several attempts to find algorithms capable of finding targeted
omponents in the 2D chromatographic data set. These algorithms
ave, as the main feature, a process of screening a 2D peak to
nd the compound of interest in a short period of time. After the
ompound of interest has been found, then the chromatographic
ub-region of this compound can be subjected to an algorithm, such
s the PARAFAC-ALS, in order to deconvolute the pure component
ignals to confirm the result and produce quantitative information.

.3.2.1. Window target testing factor analysis (WTTFA). The pro-
iferation of 2D chromatographic techniques coupled with

ulti-channel detectors has led to the development of techniques
f data analysis and algorithms robust enough to deal with very
arge multi-dimensional data arrays. Porter et al. [7] suggested the
pplication of an algorithm capable of a fast qualitative screening
f metabolites in LC × LC-DAD data sets using the window target
esting factor analysis (WTTFA) to confirm the presence or absence
f an analyte. The WTTFA algorithm used for data analysis was pro-
osed by Lohnes et al. [58], and it is based on a search for a region

n the sample’s chromatogram that closely resembles known stan-
ard spectra of compounds, producing then the retention time if

 match is found. The WTTFA algorithm starts to perform a sin-

ular value decomposition in a small retention time window of

 1D chromatogram. The resultant spectral matrix is truncated
ccording to the user input value of the maximum number of
omponents estimated in the window. After that, spectra of the
gr. B 910 (2012) 31– 45

standard compounds are projected into the subspace described by
the analysed spectra and the correlation is calculated. Finally, after
the previous steps have been accomplished, the window is incre-
mented by one time unit, and the algorithm repeats this procedure
for all windows until all possibilities are tested [7].

3.3.2.2. DotMap algorithm. The DotMap algorithm has been devel-
oped by Sinha et al. [59] for identifying spectra in GC × GC–TOFMS
complex data matrices which are similar to the target spectra of
interest. Firstly, there is a pre-treatment of the spectra data of the
compound under study and also of the 2D chromatographic data:
scaling, weighting and normalization of the data, besides correction
of the baseline. The spectral information of the compound under
study can be previously acquired from standards or from available
libraries of spectra, such as NIST02. Afterwards, the algorithm com-
putes the dot product “·” of the mass spectrum of the compound
of interest with each mass spectrum point from the complete or
partial 2D chromatogram, as follows:

m
√

Ad∑
m

√
Ad

· m
√

Au∑
m

√
Au

(3)

where Ad is the abundance of m/z signals at each point in the 2D
chromatogram, Au is the abundance of m/z signals of the com-
pound of interest, and m is the vector containing m/z values used
for weighting the signals.

The dot product result is then compared with a threshold value
defined by 90% of the maximum dot product above the median of all
dot products in the raw data, and a contour plot is generated with
the location of the results above this threshold and the maximum
value is extracted [59]. Finally, the data extracted is checked against
a traditional mass spectra library in order to verify that the analysis
has been well performed. This same algorithm has been evaluated
by Hope et al. [60] for locating analytes of interest based on mass
spectral similarity in data collected using GC × GC–TOFMS.

3.3.3. Multivariate curve resolution with alternating least
squares (MCR-ALS)

Bailey and Rutan [40] have developed another methodology
to deal with data from 2D chromatography associated to multi-
channel detection applied to complex mixtures. In this work, urine
samples were analysed in a LC × LC-DAD system with replicates,
producing a four-way data set. The aim of the work was to resolve
and quantify the non-targeted overlapped compounds. In order to
extract the maximum information from the complex data sam-
ples, Bailey and Rutan [40] developed a method that combines
an iterative key set factor analysis (IKSFA) technique with an “in-
house” MCR-ALS algorithm with a spectral selectivity constraint.
Firstly, the 2D chromatograms are divided in sections due to the
complexity of the whole sample and also due to regions of detec-
tor saturation. In the section to be analysed, the IKSFA starts by
the determining the number of unique spectra and estimates the
spectral initial guess for the next step. After that, the MCR-ALS
is then applied in order to provide a resolution of the spectral
different components, using non-negativity and spectral selectiv-
ity constraints. Finally, the relative concentrations are found using
manual baseline integration and the %RSD values are determined
by comparison with standard mixtures and control samples.

Bailey and Rutan [40] also highlighted that this algorithm does
not assume multilinearity of data, which means that it can be
applied when significant retention time deviations occur between
samples, in both chromatographic dimensions. The algorithm is

insensitive to shifts of retention time and distortions of peak shape,
and consequently does not require pre-alignment of the data before
application. The use of the non-negativity and selectivity con-
straints is enough to obtain results fit for purpose. According to
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he authors [40] this lack of multilinearity even makes this algo-
ithm more precise than the PARAFAC-ALS algorithm used by Porter
t al. [7].  Finally, the main drawback of this method is its lack of
ull automation, since it requires some user intervention [12,40].
owever, according to the authors [40], this intervention is easy to
erform and very fast to accomplish.

Recently an application of a similar methodology has been pro-
osed by Parastar et al. [61], where the MCR-ALS algorithm has been
sed to resolve and quantify a complex mixture of polycyclic aro-
atic hydrocarbons in Heavy Fuel Oil Sample by GC × GC–TOFMS.

n this study, the results have been compared to those obtained by
ommercial software and to PARAFAC, showing an improvement
f the results in terms of data fitting, elution process description,
oncentration relative errors, and relative standard deviations.

. From 1D to 2D: an extension of the concept of resolution

Apart from the concepts already discussed for the pre-
reatment, detection and quantification of peaks, there are some
ther concepts from the 1D chromatography that could be
xtended to multidimensional chromatography, namely for the
ase of 2D chromatography, such as the measurement of peak
verlap and resolution. The extension of these concepts to 2D chro-
atography implies the development of other concepts, such as the
easurement of 2D retention time, and the concept of peak vicinity.

.1. Retention time in 2D chromatography

The major obvious difference between 1D and 2D chromatogra-
hy is the existence of a second dimension, and the first difficulty
o overcome in 2D chromatography is how to deal simultaneously
ith the two dimensions. One way to solve this problem is to work
ith Euclidean distances. This metric, based in the Pythagoras the-

rem, finds the distance between two points considering that this
istance is the hypotenuse of a right triangle whose sides are the

 and Y coordinates. In practical terms, as shown in Fig. 7, the dis-
ance d0–1 between the origin and the maximum of peak 1 is given
y:

0−1 =
√

(X1)2 + (Y1)2 (4)

here X1 is the retention time of the peak 1 in the first dimension

nd Y1 is retention time of the peak 1 in the second dimension. With
he use of Euclidean distance it is possible to replace the two  chro-

atographic retention times of the 2D peak by one single metric,
s in the case of 1D chromatography.

Fig. 7. Determination of Euclidean distance fo
gr. B 910 (2012) 31– 45 41

4.2. The concept of peak vicinity

In 1D chromatography, the distribution of peaks occurs only
along one time axis and, consequently, it allows the existence of
only two  neighbouring peaks for each target peak: the peaks eluted
just before and immediately after. In this sense, there are only
two peaks that can have any degree of overlapping with the tar-
get peak. On the other hand, in 2D chromatography, the peaks
are spread all over a surface defined by the two time axis, and
there may  be several neighbouring peaks surrounding a target peak
[2,33].

For the purpose of calculating the resolution between peaks,
Peters et al. [33] suggested that the only concern should be the
study of the interaction between two consecutives peaks, thus con-
cluding that resolution is meaningful only if no other interfering
peak is in between the two peaks of interest. Therefore, prior to the
resolution measurements, it becomes necessary to find the “peak
vicinity”, and for that it is necessary to define the 2D peak regions
for all the peaks of the chromatogram. This region is composed of
all regions of the 1D peaks, as defined by the peak detection algo-
rithm of Peters et al. [27], and used for merging the 1D into 2D
peaks. In order to advance in the definition of “peak vicinity”, that
is, to establish which peaks share the same neighbouring effect,
Peters et al. [33] suggested that two  peaks are neighbours if after
plotting the non-interpolated trajectory profile line between two
sets of 2D peak clusters, there are no other peak region crossing
that trajectory. In this case, since the profile line does not cross any
other peak region, the vicinity of the two  peaks is validated and
the resolution can be measured, as shown in Fig. 8A. On the other
hand, as shown in Fig. 8B, if another peak region (peak 2) has been
found crossing the trajectory line between the two peaks (peak 1
and peak 3) then the vicinity concept between these two  peaks does
not apply.

As highlighted by Peters et al. [33], a third case of interference
can be found when between two peak clusters there is some pro-
file trajectory line that crosses a peak region although the others
do not. Fig. 8C is an example of this third case, where there are
two profile lines (represented in white) between peaks 1 and 3
that cross the region of peak 2, although the other trajectory lines
(represented in black) do not. In this third case, peaks 1 and 2 are
considered as neighbours, and peak 2, in practical terms, is not con-
sidered as an interfering peak. The number of interfering peaks in
2D chromatography of complex mixtures can be extremely large,
and Peters et al. [33] suggested the use of a threshold value below

which such interfering peaks may  be or should be neglected. There-
fore, only the peaks of intensity higher than this threshold set above
the background are considered for purpose of quantification, which
represents a limitation for low-concentration compounds.

r peak 1 in a 2D chromatographic map.
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visualization inspired by Peters et al. [33]).

.3. Resolution of peaks in 2D chromatography

.3.1. The saddle point as a measure of overlap
When two peaks in 2D chromatography are partially over-

apped, the short trajectory between these two peaks shows the
haracteristics of a saddle point, i.e. it has a minimal point in
ne direction that is simultaneously a maximal point in another
irection. As shown in Fig. 9A, if both peaks have a Gaussian shape,
hen the saddle point is the minimal point located in the shortest
rajectory line between the two maximal points of these peaks. This
oint is considered a valley point in 1D chromatography (marked
s a black dot). On the other hand, when the peaks do not show a

aussian shape, it is necessary to test all possible profile trajectories
etween the 2D peak clusters, computing all the minimal points in
hese lines and verifying which of these minimal points have the
ighest value, becoming then the saddle point.
; (B) with an interfering peak; and, (C) with a partial interference of another peak.
ereas the black lines are the profile lines that cross the peak regions of other peaks

Fig. 9B shows the difference between considering the profile
line between the two  peak maxima (white line) and the profile line
where the saddle point occurs (black line). The white dot in Fig. 9B
represents the minimal value occurring at the profile line between
the two peak maxima, while the black dot represents the value for
the saddle point. That difference as described firstly by Peters et al.
[33] can be quite significant in terms of resolution.

4.3.2. The valley-to-peak ratio in 2D chromatography
Once the saddle points and neighbouring peaks have been

identified, it becomes possible to perform the calculations of reso-
lution between the peaks [62]. This task is based on the concept of

valley-to-peak ratio, V, between two  2D peaks, using the Kaiser’s
definition [63]:

V = f

g
(5)
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here g is distance from the baseline to the line linking the apexes
f the two neighbouring peaks, and f is the distance between the
eight of the saddle point and this same line joining both peaks
aximum, as shown in Fig. 10.
In  an ideal chromatogram, with perfect Gaussian peaks, the sad-

le point is exactly in a midpoint between the peaks, thus becoming
asy to define the g value as the average of the two  peaks height
62]:

 = Hmax1 + Hmax2

2
(6)

On the other hand, as shown in Fig. 10,  the following relationship
an be defined:

 = g − Hv (7)

here Hv is the height of the saddle point [62].
However, in practical cases, perfect Gaussian peaks are not so
ommon, and the saddle point is not positioned exactly at the
idpoint between the peaks. Peters et al. [33] has overcome this

roblem by using only experimental values and geometric con-
epts to define the values of g and, consequently, using Eq. (7) to

ig. 10. Schematic diagram of an aid for calculation of the valley-to-peak ratio between tw
etention time of peaks 1 and 2 and the saddle point, respectively; Hmax1 and Hmax2 repre
re  the terms of the Kaiser’s definition for valley-to-peak ratio (Eq. (5)).
ctory line between the two maximal points of the peaks (black line) and the saddle
in non-Gaussian peaks (B), showing the profile line between the two peak maxima

 saddle point occurs (black dot) (visualization inspired by Peters et al. [33]).

estimate the value of f. Therefore, using the geometrical proprieties
represented in Fig. 10,  the g value can be defined as [33]:

g = Hmax1 × ds2 + Hmax2 × ds1

ds1 + ds2

(8)

where ds1 and ds2 are the distances between the retention time
of each peak and that of the saddle point, while Hmax1 and Hmax2

represent their respective heights. This procedure for the calcula-
tion of the valley-to-peak ratio was  firstly suggested by Peters et al.
[33] and it allows an easy way to measure the overlap of two peaks
of any shape, using only the experimental raw data from the 2D
chromatogram.

4.3.3. Measuring the resolution
Schure [62], based on the work of Giddings [64], proposed a

metric for measuring the resolution (Rs) of Gaussian peaks from 2D

chromatography using the valley-to-peak ratio (V):

Rs =
√

−1
2

ln
(

1 − V

2

)
(9)

o overlapping peaks in 2D chromatography. ds1 and ds2 are the distances from the
sent the peaks height at maximum, Hv is the height of the saddle point, and g and f
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Schure [62] also presented a compilation of resolution metrics
roposed by other authors. The first formula was compiled from
he work of Davis [65] and Shi and Davis [66]:

s(�) = ıt

√
�2 sin2 � + cos2 �

4�x
(10)

here ıt are the deviations between peaks using the Euclidean dis-
ance, �x are the standard deviations of the x peak zone and � is the
atio between the x and y standard deviations, and � is the angle
etween the line that links both peaks and a parallel line to the x
xis.

Another resolution metric presented by Schure [62] was  pro-
osed by Giddings [64], and it considers the total resolution
ollowing the Euclidean norm:

s =
√

Rs2
x + Rs2

y =
√(

ı2
x

16�2
x

)
+

(
ı2

y

16�2
y

)
(11)

here �x and �y are the standard deviations of peaks x and
, respectively; and ıx and ıy are calculated as (t̄2,x − t̄1,x) and
t̄2,y − t̄1,y), respectively.

Eq. (9) has been generalized by Peters et al. [33] for the deter-
ination of the valley-to-peak ratio for non-Gaussian 2D peaks,

nd it allows the description of the overall separation regard-
ess of the peak shape. Such a generalization constitutes a huge
dvance for evaluating the chromatographic performance in the 2D
hromatography. In order to avoid some problems related to mul-
iple vicinities between neighbouring peaks in a 2D chromatogram,
uarte et al. [35] developed a new 2D chromatographic response

unction on basis of another concept from 1D chromatography: the
eak purity. This concept, which assesses the volume peak free of

nterference, despite not being a measure of resolution, can be used
o characterize the quality of the chromatographic separation [35].
he main disadvantage of this calculation is the need for simulating

 2D model of the chromatogram in order to identify the volume of
ach peak and the overlapping zone.

. Data analysis software for 2D chromatography

The huge data sets produced by 2D separations make their
nalysis almost impossible without using some type of computer
oftware in order to transform the 2D chromatographic data into
sable information. Pierce et al. [67], in a recent review about
dvancements in comprehensive 2D separations with chemomet-
ics, conclude that most of the available commercial and public
omain software has been adapted from 1D chromatography. One
f the few examples of commercial software developed and avail-
ble for GC × GC is the software system developed as a spin off at
he University of Nebraska-Lincoln [8–11], the GC Image, which
ncorporates the inverted watershed algorithm and allows a digital
mage processing for visualization, processing, analysis and report-
ng the GC × GC chromatographic data. Recently, a version of this
oftware has been developed and released for dealing with LC × LC
ata [9].

Quite often, many researchers have developed their own
lgorithms, usually in MatLab (Mathworks, Natick, MA, USA), a
ell-known commercial software for numerical computation. Sev-

ral of this algorithms and toolbox available in MATLAB language
or analysis of multi-way data speeded all over the Internet. An
xample of this source code is the N-way toolbox available at

ttp://www.models.kvl.dk/source/ [68]. There are no reports com-
aring the performance of different commercial software available
ut there are a few studies comparing different algorithms already

ncorporated in commercial software packages [42,43].
gr. B 910 (2012) 31– 45

6. Conclusions and research needs

Data processing of comprehensive 2D chromatography is a rapid
evolving subject since there is a general lack of commercial soft-
ware associated to analytical instrumentation. Although the first
algorithms developed for data processing in 2D chromatography
were generalizations of concepts from 1D chromatography, nowa-
days there are already methods for non-targeted and targeted
analyses fully developed to deal with bilinear chromatographic
data or even higher orders. The emergence of multichannel detec-
tors will easily lead to obtaining N-way data that need expertise
drawn from chemometrics for proper data processing and attain-
ing adequate information for analytical purposes. The first step
will always be ensuring the linearity between the different orders
of instruments. In the coming years, this step may  pass through
the improvement of the current 2D chromatographic systems,
although the trend on this matter appears to be leading to the
development and improvement of algorithms capable of ensur-
ing synchronization between the orders of data. However, it is
important to highlight that if this linearity is not guaranteed,
than it is possible to sacrifice an order of measurement with ade-
quate results, depending on the purpose of analysis. Within the
approaches for calculating the quality of chromatographic separa-
tion, there is still room for improvement. This operation has only
been developed for bilinear data. Nevertheless, the current state
of progress within the chromatographic systems emphasizes more
and more the need to develop methods of calculation for higher
orders of data. Even for bilinear structures there is still some prob-
lems, namely the multiple vicinities between neighbouring peaks
in the calculation of the resolution, or the need to produce a 2D
chromatographic model for calculating the peak purity. Also the
use of Euclidean distances should be the subject of study due to
the different order of magnitude between dimensions. The use a
of weighted distance measurement, such as the Mahalanobis dis-
tance, may  be more appropriate. Finally, it should be stressed that
the researchers often choose to develop their own algorithms and
consequently it becomes hard to compare the results obtained.
Besides, such an expert knowledge may  take some time to be
embedded in user-friendly software associated to the analytical
instrumentation available in chemical laboratories.

Data processing of comprehensive two-dimensional chro-
matography is an area of great interest and expansion, thus
becoming very difficult to define a clear cut trend, but rather
allowing only establishing a set of methodologies and guidelines
according to the type and order of magnitude of data, and purpose
of analysis.
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